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Abstract- By using numerical solving of the 1D time dependent 

Schrödinger equation, we present theoretical study of high-

order harmonic generation using plasmonic field enhancement. 

We show that the strong inhomogeneity feature of field 

enhancement, plays an important role in HHG process and as a 

result we obtain a short isolated pulse. 
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I. Introduction 

Recent advances in laser technology have enabled the full control 

of few-cycle optical fields, which have key applications 

including the production of isolated, attosecond (1as=10 
-18

s) 

extreme ultraviolet (XUV) pulses via high-harmonic generation 

(HHG) [i] and the study of nanosystems in the ultrafast 

regime[ii,iii]. 

 

At the present time, the most well-known theory to understand 

the HHG is the classical three-step (or simple man's) model [iii]. 

According to this model, the electron first tunnels through the 

barrier formed by the Coulomb potential and the laser field 

together. Then it oscillates and accelerates by the laser field. 

Finally, it can recombine with the parent ion releasing a photon 

with the maximum energy given by 3.17cutoff p pE I U  , 

where pI  is the ionization potential and pU is the 

ponderomotive energy of the free electron 

in the laser field.  

 

Another alternative way of producing attosecond pulses at high 

repetition rates is to exploit the plasmonic field enhancement 

occurring in metallic nanostructures [iv, v]. The plasmonic 

resonance of free electrons boosts the intensity level of a modest 

femtosecond lase pulse readily by a factor of more than 100, 

leading to generation of high-order harmonics without reducing 

the repetition rate [vi–viii].  

 

For high-order harmonic generation to occur, one needs a laser 

field with intensity greater than 
13 210 /w cm , two orders of 

magnitude larger than the output of the current modest 

femtosecond oscillator(
11 210 /w cm ). It means an additional 

process like chirped-pulse amplification is needed to reach the 

required intensity for generation of high harmonics using noble 

gases. Even so, the XUV based on HHG has low duty cycle and 

efficiency [iii]. The recent demonstration based on surface 

Plasmon resonances as light amplifiers could overcome these 

difficulties [iii,ix]. By maneuvering surface Plasmon resonances, 

the laser electric fields can locally be enhanced by more than 20 

dB [x, xi] without the need of extra cavities or laser pumping 

process. 

 

The physical mechanism of HHG based on plasmonics can be 

explained as follows (for full explanation see [iii]). A 

femtosecond low intensity laser pulse couples to the Plasmon 

mode and initiates a collective oscillation among the free charges 

within the metal. This causes a large resonant enhancement of the 

local field inside and at the nanostructure vicinity. This 

enhancement is well above the threshold intensity for generating 

high harmonics. Consequently, by injecting rare gases into the 

site of the enhanced field, HHG can be produced. In here, the 

enhanced field is spatially inhomogeneous in the region where 

electron dynamics take place. 

II. Material and Methodology 

In our calculations, the HHG and the attosecond pulse generation 

can be investigated by solving the one dimensional time-

dependent Schrödinger equation (TDSE) based on single-active 

electron approximation [xii-xiv]. In the dipole approximation and 

the length gauge, the TDSE is given by (atomic units are used 

throughout this paper unless stated otherwise) 
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Where ( )V xA  is the atomic potential and ( , )V x tL  represents 

the potential due to the laser electric field. Here, we use for V A  

the ”quasi-Coulomb” or ”soft-core” potential[xv] for H  atom 

 

1
( )

2( 1)

V xA
x

 



                               (2) 

 

The laser potential ( , )LV x t  of the laser electric field ( , )E x t  is 

given by 

( , ) ( , )LV x t E x t x                                (3) 

 

In Eq. (3), the spatial dependency of ( , )E x t  can be defined in 

terms of a perturbation to the dipole approximation and it reads 
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Fig.1. Electric field for H atom inside the bow-tie nanostructure gap when it has 

been influenced by liner polarization plane wave with 800 nm wavelength. Panel 

(a) electric field in  for  ,  and , panel (b) functional 

form of the field as function of time and space for . 

 

which is linearly polarized along the x-axis. In Eq. (4), 0E  , 0  

and ( )f t  are the peak amplitude, the frequency of the coherent 

electromagnetic radiation and the pulse envelope, respectively. In 

addition, ( )h x  represents the functional form of the 

nonhomogeneous electric field and it can be written as a power 

series of the form 
1

( )
N i

ii
h x b x


 . The coefficients ib  are 

obtained by fitting the actual electric field that results from a 

finite element(FE) simulation considering the real geometry of 

different nanostructures[xvi]. The envelope function is  
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, pn  and offn  are the number of cycles of turn on, plateau and 

turn off, respectively. 

Equation (1) is solved numerically by using the Crank- Nicolson 

scheme [xvii]. The time-dependent induced dipole acceleration 

can be given by means of Ehrenfest’s theorem [xviii], 

 
2

2
( ) ( , ) ( ), ( ), ( , )

d x
d t x t H t H t x x t

dt
              (6) 

In here, ( )H t  and ( , )x t  are the Hamiltonian and the electron 

wave function defined in Eq. (1), respectively. And the HHG 

spectrum ( )I   is obtained by Fourier transforming the time-

dependent dipole acceleration ( )d t , 

 
Fig.2. High-order harmonic generation (HHG) spectra for a model atom with 
EGS =-0.67 a.u. generated using the 1D-TDSE. The laser parameters are 

and λ = 800 nm. We have used a trapezoidal shaped pulse 

with ten optical cycles, for  ,  and . 
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Then, attosecond pulse can be generated by superposing 

harmonics, 

2
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Where ( ) i td d t e dt


    represents the inverse Fourier 

transformation.  

III. Results and Tables 

We only consider the linear term of the series for ( )h x , then  

0 0( , ) ( )(1 )sin( )E x t E f t x t              (9) 

where 1   is a parameter that characterize the strength of the 

inhomogeneity and has dimensions of inverse length. 

We use 
14 23 10 /I w cm  . We have used a trapezoidal shaped 

pulse with three optical cycles turn on ( 3onn  ) and turn off 

( 3offn  ) and a plateau of four constant-amplitude optical 

cycles ( 4pn  ). 
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Fig.3. the single isolated attosecond pulse for (a)  by superposing 

320th -387th harmonics obtained 57 attosecond and (b)  by 

superposing 340th -425th harmonics obtained 44 attosecond 
 

Fig. 1(a), shows the electric field for Hydrogen atom inside the 

bow-tie shaped nanostructure in the origin of the gap for 0.0   

(blue), 0.003   (red) and 0.005   (black). 

The dependence of electric field on both time and x when 

0.003   is shown on Fig. 1(b).  

At first, we consider field with 0.0   then compare this result 

with result of enhance field. As seen in fig. 2, the cutoff order is 

in the 365th order of harmonic (red line). By using 0.003   

and 0.005   the cutoff orders are 387th (blue line) and 425th 

(black line), respectively. 

By comparing these results, we can see that by using enhanced 

field and increasing the inhomogeneity parameter, the cutoff 

order will increase. Increasing of the cutoff order is significant in 

producing attosecond pulse, whatever this content increase we 

have shortest attosecond pulse. 

Then, we peruse the generation of attosecond pulses from HHG 

in enhanced field. Generation profile pulse for  0.003   is 

shown in Fig. 3(a). In this case, we obtaine a single isolated 57 

attosecond pulse by superposing several consecutive harmonics 

(320th -387th). 

 

 
Fig. 4. The variation of the cutoff position of HHG as a function of field 

inhomogeneity  between 0 and 0.01 a.u. The parameters are the same as in 

Fig.2. 

Now, by superposing several consecutive harmonics in case 

0.005   (340th -425th), we can obtain a single isolated 

attosecond pulse, 44 attosecond, as shown in Fig. 3(b).  

Finally, we investigate the dependence of the cutoff on the 

field inhomogeneity   of the driving field. The values of   are 

chosen between 0.0 and 0.01 a.u. on a coarse mesh with 0.001 

a.u. The results are presented in Fig. 4. As it can be seen from 

this figure, the increase in the order of the inhomogeneity 

translates into the cutoff extension linearly.  

IV. Conclusions 

When we use inhomogeneous field the cutoff of spectrum is 

extended. Also by increasing the value of  parameter, the cutoff 

order increased. By superposing several consecutive harmonics 

of this part, a single isolated attosecond pulse produced by ideal 

time profile. Finally, the cutoff position increased almost linearly 

as the inhomogeneity factor grew.  
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