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Abstract: To determine the effective hydrodynamic radii of 

small uncharged molecules in dilute aqueous solution, 

Einstein’s classical theory of viscosity can be employed. The 

radii thus obtained are considered as hypothetical sphere 

whose hydrodynamic behavior is the same as that of the 

solute molecule along with that solvent which is too firmly 

bound to the solute in viscous shearing process. Einstein’s 

formula is recuperated as a first-order asymptotic extension 

of the effective viscosity in the volume fraction. The formula 

is applied to molecules having comparable size to that of 

water.Determining the viscometric radii of Glycine in 

solution with Urea(aq) from Einstein’s equation, an attempt 

has been carried out to obtain empirical correction for 

Stokes-Einstein diffusion equation.  
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INTRODUCTION:  

The methods such as molecular model or crystallographic 

studies available for determining size of small uncharged 

molecules in solution using do not allow for solvation of 

molecules in solution. Electrostriction between solute and 

solvent molecules introduces an additional theoretical 

drawback to calculations based on the partial molal volume of 

solute in aqueous solution. Einstein's effective viscosity 

relation has been proved by Minton and Grupi[1] for a dilute 

suspension of binary and ternary mixtures of Non-associating 

proteins[2].  

MATERIAL AND METHOD: 

0.01M aqueous solution of Urea (minimum assay 99%, 

Qualigens) was prepared by w/v. Solutions of Glycine 0.103m 

to 1.012 m (precision of ±1x10
-4

g on electronic digital 

balance) were prepared with Urea(aq). Density was measured 

by precalibrated bicapillary pyknometer (error±0.06%), 

viscosity by precalibrated Ostwald’s 

viscometer(error±0.07%), sound speed by Ultrasonic 

interferometer (Mittal Enterprises, New Delhi, Model F-81) 

working at a fixed frequency of 2 MHz up to an accuracy of 

±0.04%were measured at constant temperature in a 

refrigerated water bath maintaining temperature up to 

±0.1°C[1-3]. The experimentation is carried out at 

temperature 298 K, 308 K and 318K in order to have precise 

information on the interactions in the solution. 

Einstein's classical hydrodynamic treatment of viscosity has 

been employed for the determination of the effective  

 

hydrodynamic radii of small amino acid Glycine molecules in 

dilute aqueous solution of Urea (urea in aqueous is considered 

as solvent). Einstein’s theory proposes the effect of solute 

particles in viscous flow of to distort the stream-lines of 

solvent flow, thereby introducing a rotational quality. This 

obstructing action increases the energy dissipated at constant 

shear velocity and also the coefficient of internal friction or 

viscosity. 

The viscosities (η) of the solutions of Glycine with Urea(aq) 

enhances with the increase in concentration of amino acids at 

all temperatures and lessen with the ascending temperature 

(Table 1). The increase with concentration can be explained as 

the molecular association between solute and solvent. 

Thermal energy influences the bond strength, hence η decline 

with the rise of temperature. 

When rigid uncharged spheres are randomly dispersed in an 

incompressible medium, the viscosity of the pure solvent is 

increased according to the relationship: 

)5.21(0  
    

     ……….(1)

  
 

Where η= the viscosity of the solution,  η0= the viscosity of 

the pure solvent, 

and    = the volume fraction of the solvated solute 

molecules.  

Einstein states for very small rigid spheres suspended in a 

liquid, the coefficient of viscosity increases by a fraction that 

is equal to 2:5 times the total volume of the spheres suspended 

in a unit volume, provided that this total volume is very 

small[3]. 

Einstein’s theory was developed on the assumption that the 

solute molecule is large compared to the solvent molecules. 

The application of this treatment to molecules whose sizes are 

comparable to that of water represents a considerable 

extrapolation to infinite dilution. 

The formula above should be interpreted as a first-order 

calculation in an infinite asymptotic expansion of the true 

effective viscosity in powers of the volume fraction[4]. 

Einstein used this method in his original paper to determine 

the radius and hydration of sucrose, a molecule whose radius 

is only three times greater than that of water. The validity of 

Einstein's theory has been experimentally confirmed for 
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suspended particles with radii as small as 50 
0

A [5]. Several 

modifications have been developed for more concentrated 

solutions[6]. Mooney realized that, at higher concentrations, 

the empirical data for relative viscosity appear to follow more 

of an exponential function of concentration. Correlations 

between relative viscosity ηr and volume fraction were 

modified accordingly and various empirical relations were 

given by Krieger and Dougherty , Mooney, ELiers , Quemada  

and Robinson[7]. 

The effective hydrodynamic radius may be defined as the 

radius of a rigid uncharged sphere which exhibits the same 

hydrodynamic behavior as the solvated molecule in solution, 

thus including that water of hydration which is too firmly 

bound to participate in the viscous shearing process.  

In the present experiments, the problem of concentration 

dependence has been avoided by extrapolation of the reduced 

viscosity to infinite dilution. At very low concentrations an 

average value of the reduced viscosity has been used[8].  

The equation then becomes 

      

      …...(2)

  

 

Where C is the concentration of solute in molar units.  

The effective hydrodynamic radius (r, in cm) is thus expressed 

as  

      

               ……(3)

  

    

 

Where N is Avogadro’s number 

 

RESULTS AND DISCUSSIONS: 

Viscosities measured over the concentration range from 

0.01M to 1.02 M are given in Table 1 together with the 

calculated hydrodynamic radii.  

As can be seen from our data, the effective hydrodynamic 

radii show very little dependence on concentration. 

S. 

No. 

Conc. mol 

kg
-1

 

Viscosity 

[η/(x10
-3

 Ns m
-2

)] at 

Effective 

Hydrodynamic 

radius in 
o

A  

298 K 

1 0.0000 0.8799 ---- 

2 0.1030 0.8925 2.804 

3 0.2060 0.9028 2.716 

4 0.3090 0.9131 2.685 

5 0.4119 0.9203 2.605 

6 0.5149 0.931 2.615 

7 0.6179 0.9445 2.661 

8 0.7209 0.9668 2.79 

9 0.8239 0.9892 2.881 

10 0.9269 1.0044 2.893 

11 1.0298 1.0193 2.9 

    

S. 

No. 

Conc. mol 

kg
-1

 

Viscosity 

[η/(x10
-3

 Ns m
-2

)] at 

308 K 

Effective 

Hydrodynamic 

radius in 
o

A  

1 0.0000 0.715 ---- 

2 0.1030 0.7324 3.3498 

3 0.2060 0.7442 3.156 

4 0.3090 0.7522 2.9888 

5 0.4119 0.7638 2.9729 

6 0.5149 0.775 2.9565 

7 0.6179 0.7863 2.9468 

8 0.7209 0.8051 3.0263 

9 0.8239 0.8239 3.0833 

10 0.9269 0.8347 3.0595 

11 1.0298 0.8456 3.0411 

    

S. 

No. 

Conc. mol 

kg
-1

 

Viscosity 

[η/(x10
-3

 Ns m
-2

)] at 

318 K 

Effective 

Hydrodynamic 

radius in 
o

A  

C
C

m
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1 0.0000 0.6019 ---- 

2 0.1030 0.6231 3.8017 

3 0.2060 0.6336 3.4542 

4 0.3090 0.6434 3.3046 

5 0.4119 0.6533 3.2282 

6 0.5149 0.6647 3.2071 

7 0.6179 0.6764 3.1983 

8 0.7209 0.6918 3.2379 

9 0.8239 0.7076 3.2722 

10 0.9269 0.7152 3.2233 

11 1.0298 0.7228 3.1836 

The effective hydrodynamic radii also depend on temperature 

(Table 1).  

To conclude the increase in the effective hydrodynamic radii 

with increasing temperature is consistent with a increased 

degree of molecular hydration. Second, the relatively small 

magnitude of the temperature effect on the effective 

hydrodynamic radii suggests that long range solute-solvent 

interactions are of second order importance for this 

compound.  

The increasing hydrodynamic radius with higher temperatures 

can be explained as the solvent structure disrupted by 

increased thermal agitation and neglected or minimum 

disordering effect of the solute particle[9,10]. The increasing 

values with temperature also suggest that long range solute-

solvent interactions are also important in the parameter we 

have computed. 
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